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Abstract-The development of rigid crinoid-type pressure fringes is simulated for variable shape and orientation 
of the rigid original grains, matrix flow pattern and total strain, using Etchecopar and Malavieille’s model, which 
is based on a principle of geometrical minimization of the gap between a rigid grain and its ductile matrix. A 
method of determining the non-coaxiality of the matrix flow is constructed assuming two-dimensional flow with 
constant area and time-independent flow parameters. In this method, the systematic variation in the geometry of 
the pressure fringes as a function of the shape and orientation of the rigid original grains, is used as a criterion. 
The application to the natural examples shows consistent variation in the geometry of pressure fringes with the 
simulation. This indicates the validity of the method as long as the assumptions hold. 

INTRODUCTION 

The kinematic description of rock flow is indispensable 
to an understanding of the dynamics of the crust and 
mantle of the Earth. Although many attempts have been 
made in the past to reconstruct deformation paths and to 
determine flow parameters such as shear sense and 
degree of non-coaxiality in rocks (e.g. Elliott 1972, 
Durney & Ramsay 1973, Cox & Etheridge 1983, Lister 
& Williams 1983, Simpson & Schmid 1983, Lister & 
Snoke 1984, Hanmer 1986, Passchier 1986,1988,1990, 
Passchier & Simpson 1986, Cobbold ez al. 1987, Dennis 
& Secor 1987, Goldstein 1988, Bjomerud 1989, Wil- 
liams & Price 1990, Passchier & Sokoutis 1993, Simpson 
& De Paor 1993), complexities in kinematic analysis 
become increasingly recognized (e.g. Ishii 1992). 

Pressure fringes are fibrous minerals (generally 
quartz, calcite, chlorite and muscovite) developed 
around grains more rigid than their matrix. They are 
widely developed in deformed rocks up to greenschist 
facies. The difference in rheological properties between 
the grain and the matrix leads to discordance in the 
displacement field at the grain boundary and the gaps so 
created are filled by fibrous minerals. 

Pressure fringes have been classified into three types 
according to the growth direction of the fibres: pyrite 
type (antitaxial), crinoid type (syntaxial) and composite 
type (Durney & Ramsay 1973, Ramsay & Huber 1983), 
and they have been further divided into rigid and 
deformable types depending on the rheological behavior 
of the fibrous material (Ramsay & Huber 1983). There 
may exist continuous variation between these two end- 
members. In addition, Dumey & Ramsay (1973) and 
Ramsay & Huber (1983) have distinguished between 
displacement-controlled and face-controlled fibre 
growth. In the latter, the length direction of the fibres is 
not parallel to the displacement direction, although 
inclusion trails (ghost fibres) indicate the displacement 
direction (see also Ramsay 1980, Cox & Etheridge 1983, 

Cox 1987). This information about the displacement 
direction is essential to kinematic analysis. 

Previous studies using pressure fringes as kinematic 
indicators of rock deformation can be divided into two 
groups. One aims at the sequential determination of 
strain increments (Elliott 1972, Dumey & Ramsay 1973, 
Wickham 1973, Ramsay & Huber 1983, Beutner & 
Diegel 1985, Ellis 1986, Spencer 1991). The other aims 
at the determination of several parameters by compari- 
son of the total geometry with simulated pressure fringes 
(Etchecopar & Malavieille 1987, Malavieille & Ritz 
1989). 

The first approach has the advantage of obtaining a 
strain path in a deterministic manner. The second 
approach requires a method of trial and error to match 
the simulated pressure fringe with the natural one. An 
advantage of this approach is the ability to incorporate 
the rotation of the rigid grain as a function of matrix flow 
and grain shape. This advantage is revealed in the 
excellent reproduction of the variable geometry of natu- 
ral pressure fringes using a small number of parameters 
and actual grain shapes (Etchecopar & Malavieille 1987, 
Malavieille & Ritz 1989). 

Etcheopar & Malavieille (1987) constructed a simu- 
lation model for pyrite-type pressure fringes. In this 
paper, rigid crinoid-type pressure fringes are simulated 
using the same model. Then, using systematic variations 
in the geometry of pressure fringes as a function of the 
shape and orientation of the rigid grain, a method to 
determine non-coaxiality is constructed and is applied to 
natural examples. 

DESCRIPTION OF FLOW 

Flow can be described by the velocity gradient tensor 
L as a function of time and position. L can be decom- 
posed into a symmetrical rate of deformation tensor D 
and an antisymmetrical vorticity tensor W’: 
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where 

Lij = Dij + W:,, (1) 

Dy = i(Lq + Lji), and 

W$ = i(Lq - Lji)* 

The orientation of the eigenvectors of D correspond to 
the instantaneous stretching axes (ISA) of the flow and 
the eigenvalues of D correspond to the principal stretch- 
ing rates. W’ represents the rotational component of the 
flow (i.e. average angular velocity of all material lines) 
with respect to the reference frame. W’ can be further 
decomposed into an internal vorticity W and a spin Q 
(Means et al. 1980, Lister & Williams 1983), 

L, = Dij + Wij + fIti. (2) 

iTI describes the rotation rate of the ISA with respect to 
the reference frame and W describes the average ro- 
tation rate of material lines relative to the ISA (internal 
frame). Note that although fi is different in different 
frames, W is independent of the reference frame in 
which the flow is described. 

The non-coaxiality of the flow can be defined by the 
kinematical vorticity number, which was introduced by 
Truesdell (1953) and redefined for internal vorticity only 
by Means et al. (1980); 

w,= W W 

v@s; + s; + sg) = S’ 

where W is the magnitude of the internal vorticity vector 
and Si are the eigenvalues of D. S is a measure of 
stretching rate, then W, is the ratio of the instantaneous 
magnitudes of the internal vorticity and stretching rate. 
Detailed explanations of these flow parameters and 
their geological implications are given in Means et al. 
(1980)) Lister & Williams (1983)) Passchier (1986) and 
Ishii (1992). 

In this paper, the matrix flow is assumed to be two 
dimensional and maintaining constant area, with time- 
independent flow parameters, and is described in the 
reference frame which is parallel to the ISA (i.e. no spin 
component). In this case, without losing generality, the 
flow can be represented by 

L=D+W=(; !J+(Tw 3, (4) 

where e 3 0 and w 2 0 (Fig. l), and non-coaxiality (3) is 
given by 

w,=z 
e (5) 

In this paper, clockwise rotation is taken to be positive. 

ROTATION OF A RIGID GRAIN IN A 
FLOWING MATRIX 

A rigid elliptical grain embedded in a flowing viscous 
medium rotates. For a case of matrix flow given by 

Fig. 1. Definition of parameters. The reference frame @y-axes) is 
parallel to the ISA of the matrix flow. w and e are the components of 
the velocity gradient tensor for the matrix flow (equation 4). a and b 
are lengths of the long and short axes of a rigid elliptical grain, and 
R = a/b defines the ellipticity of the grain. 4 and ~5 represent the 

orientation of the long axis and the rotation rate of the grain. 

equation (4), the rotation rate of the grain is (Jeffery 
1922, Ghosh & Ramberg 1976) 

c$=$~+c&= -e$-$sin2@ +[w], 1 (6) 
where R and $ are ellipticity and orientation of the 
elliptical grain, respectively (Fig. 1). iD represents the 
rotation rate due to the D component of the velocity 
gradient tensor and is a function of e, R and $J. &I~ 
represents the rotation rate due to the W component and 
is independent of R and #. 

For a circular grain (R = l), the rotation rate of the 
grain is equal to w because iD vanishes. Elliptical grains 
(R > 1) will rotate even if the flow is coaxial (i.e. w = 0). 
In such coaxial flow, the elliptical grain with orientations 
of @ < 0“ and @ > 0” rotates clockwise and anti- 
clockwise, respectively. The absolute magnitude of the 
rotation rate is a maximum at @ = +45” and vanishes at 
# = 0” and +90”. For given e and @ in coaxial flow, the 
absolute magnitude of the rotation rate of the grain 
increases with R . 

In general flow, the rotation rate of an elliptical grain 
is the sum of iD and iw, and thus, a function of R, q5 and 
Wk. Therefore, the rotation rate is a maximum at 
C$ = -45” and a minimum at # = 45”, including negative 
values. From equation (6), the condition for anticlock- 
wise rotation (4 < 0) is given by 

R2- 1 
-sin2# >W= Wk. 
R2 + 1 e 

If W, 3 1, all grains rotate clockwise irrespective of the 
values of R and $. Furthermore, the elliptical grain with 

R2-l>W 

3-a k (8) 

rotates anticlockwise at an orientation of around 
# = 45”, because sin 2$ has its maximum value of 1 at 
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C#J = 45”. The range of @ for which the grain rotates 
anticlockwise increases with increasing R and decreasing 
Wk. Detailed explanations and graphical presentations 
are given in Ghosh & Ramberg (1976). 

Using model experiments, Ghosh & Ramberg (1976) 
showed that these equations also apply to non-elliptical 
rigid grains, such as rectangular grains, with a suitable 
approximation of the shape by ellipses. 

METHOD OF SIMULATION 

The development of rigid crinoid-type pressure 
fringes is simulated using the computer model of Etche- 
copar & Malavieille (1987). The matrix flow represented 
by equation (4) is approximated by a step-wise calcu- 
lation of particle paths; 

(9) 

using small be and Aw. In this case, the kinematical 
vorticity number. (5) can also be approximated by Awl 
Ae. 

Firstly, the outline of the rigid grain is defined by 
regularly spaced points (Xi, YJ (Fig. 2a). Next, consider 
the displaced positions of these points (Xi,yi) for an 
incremental step, assuming that the grain has the same 
ductility as the matrix; 

-Aw 1 - be 
(10) 

Since the rigid grain undergoes rotation and translation 
only, new positions for the rigid grain (Xj,Yj) are rep- 
resented by 

(11) 

The rotation (A0) and translation (Au,Av) are deter- 
mined so as to minimize the expression 

1 d(Xi-Xi)'+ (yi- Yi)'. (12) 

This implies that the gaps, overlaps and boundary sliding 
between grains and the matrix are minimized. The gaps 
which still remain are assumed to be filled by fibrous 

a C 

d(Xl.Yi 1 

q c9 

Fig. 2. Simulation model for the rigid crinoid-type pressure fringe. (a) 
The outline of the rigid grain before a deformation increment is 
defined by points (X,,Yi). (b) (xi,yi) are the positions of (Xi,Yi) after a 
deformation increment, assuming no ductility contrast between grain 
and matrix. The position of the rigid grain (Xi,Y/) after a deformation 
increment is determined so as to minimize the expression (12) and 
remaining gaps are filled by fibres. (c) The outline of the rigid grain is 

redefined and the next deformation step is computed. 

minerals (Fig. 2b). Therefore, the crystallization rate 
and the rate of material supply are assumed to be high 
enough to keep pace with the strain rate. Furthermore, 
the growth direction is assumed to be parallel to the 
direction of relative displacement between the grain and 
the matrix. 

Since a rigid crinoid-type pressure fringe is being 
simulated, the outline of the rigid grain is redefined to 
include the newly formed pressure fringe, then the next 
deformation step is computed (Fig. 2~). 

The simulations are carried out for Ae = 0.02 and for 
variable degrees of non-coaxiality. In addition, the 
shape (R,) and initial orientation (Go) of the rigid 
original grain and the total strain are also taken as 
variable parameters. The definitions of R, and C#J~ are as 
shown in Fig. 1. Up to 50 simulation steps (n) were 
taken. 

The rotational behavior of a rigid elliptical grain in 
this simulation model is identical to that given by the 
theoretical equation (6). 

GEOMETRY OF SIMULATED PRESSURE 
FRINGES 

Circular grain (R, = 1) 

Figure 3 shows the variation in the geometry of 
simulated pressure fringes for a circular original grain 
(R, = 1). In the case of W, = 0, a straight pressure 
fringe forms parallel to the x-axis, because the original 
grain does not rotate and the pressure fringe grows 
parallel to the x-axis throughout the deformation. In 
other cases (W, > 0), the pressure fringes develop cur- 
vature, because the original grains rotate, together with 
the previously formed pressure fringe, due to the vorti- 
city of the flow and the growth direction of pressure 
fringe at each increment remaining sub-parallel to the 
x-axis. 

In the present simulation, the curvature of the press- 
ure fringes depends mainly on the rotation rate of the 
grains relative to the growth rate of the fringes, because 
of the absence of spin in the matrix flow. The sense of 
curvature is the same in all cases due to the same sense of 
vorticity, and thus of rotation of the grain. In this paper, 
this sense of curvature is called positive. Magnitude of 
curvature increases with increasing Wk. 

Due to the growth of the pressure fringe, the shape of 
the composite grain (the original grain + pressure fringe) 
becomes gradually elongate in a direction sub-parallel to 
the principal axis of the strain ellipse. This elongation of 
the composite grain reduces the rotation rate of the grain 
due to an increasing c$~ component (equation 6) of 
anticlockwise sense. Therefore, the curvature of the 
pressure fringe decreases away from the original grain. 

Elliptical grain (R, = 2) 

(1) Wk = 0. Figure 4 shows the variation in the geom- 
etry of simulated pressure fringes for the case of R, = 2 
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Fig, 3. Variation in the geometry of the simulated pressure fringes as a function of W, and simulation step (n) for circular 
originat grains (Re = 1). Radial marker lines indicate the rotation of the grams. The length and orientation of the principal 

axes of strain and the axial ratio of the total strain ellipse are shown to the lower left of each simulated pressure fringe. 

I 

Fig. 4. Variation in the geometry of simulated pressure fringes as a function of initial orientation of the original grain ($0) 
and II for W, = 0 and eltipticak original grains (Re = 2). The principal axes and the axial ratio of the strain ellipse are shown 

in the left column. 

and W, = 0. Although the matrix flow is coaxial, the For this range of Qla, the original grains rotate clock- 
elliptical shape of the original grains gives rise to their wise and pressure fringes grow with positive curvature, 
rotation as a function of their initial orientation (&). except for #a = 0” and -9O”, in which cases the grains do 
Since the variation in these rotation rates and the geom- not rotate and straight pressure fringes are formed. The 
etry of the developed pressure fringes as a function of &, rotation of the composite grains and the growth of the 
are symmetrical with respect to qbO = O”, only the cases pressure fringes cause a change in the shape and orien- 
for -90” < & c 0“ are shown. tation of the composite grains, resulting in a change in 
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Fig. 5. Variation in the geometry of simulated pressure fringes as a function of @a and n for W, = 0.5 and R,, = 2. The 
principal axes and the axial ratio of the strain ellipse are shown in the left column. 

00 
90" 75’ 60’ 45’ 30” 15” 0” 

0 

negative curvature 

0.2 

wk 

0.4 

0.6 

Fig. 6. Variation in the geometry of simulated pressure fringes for a range of q$, (0” < $a S 90”) and W, (0 S W, S 0.6) and 
for R. = 2 at n = 30. The range of values of @a and W, that give negative curvature of the pressure fringe is also shown. 

the rotation rate during deformation. This change in 
rotation rate is responsible for the variation of curvature 
of the pressure fringes along the growth direction. For 
example, for the grain with $J,, = -6O”, the curvature of 
the pressure fringe during the early stages (n < 20) is 
large, and it decreases in later stages due to the change in 
orientation of the composite grain. 

(2) 0 < IV, < 1. Figure 5 shows the variation in the 
geometry of simulated pressure fringes for the case of 
R,, = 2 and W, = 0.5. In spite of the non-coaxial defor- 
mation, the pressure fringes are nearly straight, except 
for @a = +90”. Equation (8) indicates the anticlockwise 
rotation of the original grain with &, = 45” at this R. and 
16 ,I:%L 

Wk. However, this rotation rate is very small and the 
resulting pressure fringes are nearly straight. 

Figure 6 shows the variation in the geometry of the 
pressure fringes at simulation step n = 30 in the range of 
0” s c$,, 6 90” and 0 c W, s 0.6 for R, = 2. The sense 
and magnitude of the curvature varies depending on the 
sense and magnitude of the rotation of the grains. The 
range of &, for pressure fringe with negative curvature 
decreases with increasing Wk. However, the curvatures 
are small, reflecting small rotation rates. This variation 
in the geometry of the pressure fringes is a direct 
reflection of the rotational behavior of the grains, which 
can be represented by equations (6)-(8). 
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Fig. 7. Variation in the geometry of simulated pressure fringes as a function of do and n for W, 1.0 and R. = 2. The 
principal axes and the axial ratio of the strain ellipse are shown in the left column. 

(3) W, = 1. F’g 1 me 7 shows the variation in the geom- 
etry of simulated pressure fringes for the case of Rc = 2 
and W, = 1. In this case, the original grains rotate 
clockwise for all c&,. The magnitude of the curvature of 
the pressure fringes varies with &, and II. Generally, the 
curvature decreases away from the original grains due to 
the elongation of the composite grain subparallel to the 
finite strain axis during the deformation. For @e = 60” 
and 90”, however, a nearly equiaxial shape of the com- 
posite grain allows for large rotation rates until later 
stages, resulting in large total curvature. In contrast, for 
$c of around O”, pressure fringes are nearly straight even 
from the beginning of growth, because the orientation of 
the composite grain is sub-parallel to the strain axis from 
an early stage. 

(4) W, = 1.5. For the case of Ra = 2 and W, = 1.5, 
variation in the geometry of simulated pressure fringes 
(Fig. 8) is similar to the case of W, = 1. However, the 
effect of increasing non-coaxiality is represented by a 
general increase in the curvature of the pressure fringes. 
In particular, the circular shape of the composite grain 
and large curvature in the outer part of the fringe for 
30” < & 6 90” are characteristic. 

To summarize the present simulations, the following 
factors affect the geometry of the pressure fringe: 

(1) The matrix flow pattern. Generally, the curvature 
of the pressure fringes increases with Wk. 

(2) The total strain. A pressure fringe grows monoto- 
nously with straining, unless other destructive pro- 
cesses, such as dissolution of fringe material by inter- 
granular fluid, are involved. 

(3) The shape and orientation of the original grain. 
The curvature of the pressure fringe depends on the 

rotation rate of the grain, which is a function of these 
parameters. 

(4) The shape and orientation of the composite grain. 
The growth of a pressure fringe causes a change in the 
shape and orientation of the composite grain, affecting 
the next growth increment. 

METHOD FOR THE DETERMINATION OF 
FLOW PARAMETERS 

So far, the variation in the geometry of simulated 
pressure fringes as a function of several parameters, 
such as W,, Ro, qbo and total strain, have been described. 
Next, I discuss how these parameters can be determined 
from the final geometry of pressure fringes. 

Qualitatively, the sense and magnitude of the press- 
ure fringe curvature reflect the sense and value of Wk, 
and the shape of the composite grain reflects the strain 
ellipse. However, since several parameters contribute to 
the geometry of a pressure fringe, there is no one-to-one 
correspondence between these. We must remember that 
the available information is restricted to the final shape 
and orientation of the original grains and the pressure 
fringes. 

Figure 9 shows variation in the geometry of pressure 
fringes after 30 simulation steps, as a function of Wk and 
the final orientation of the original grain relative to the 
principal strain axis (@& = O”, -45”, 90” and 45”). In 
this figure, the long axis of the strain ellipse is horizontal. 

For I$;=~,, = O”, nearly straight pressure fringes are 
developed parallel to the strain axis. Since the curvature 
of the pressure fringe is very small even for Wk = 1.5, it 
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Fig. 8. Variation in the geometry of simulated pressure fringes as a function of @a and n for W, = 1.5 and Ro = 2. The 
principal axes and the axial ratio of the strain ellipse are shown in the left column. 

Fig. 9. Variation in the geometry of simulated pressure fringes at 
II = 30 as a function of W, and final orientation of the elliptical 
(R, = 2) original grain with respect to the principal strain axis (~#&a). 
The long axis of the strain ellipse is horizontal. The initial orientation 
of the original’grain (@co) is shown in the upper left of each simulated 

pressure fringe. 

is difficult to determine the value of W, from these 
grains. However, a nearly straight pressure fringe paral- 
lel to the long axis of the original grain indicates the 
principal axis of strain ellipse irrespective of the values 
of W,, qio and the total strain. 

For large @&so, by contrast, there is a large variation 
in the curvature of the pressure fringes depending on the 
value of Wk. Therefore, a pressure fringe with such an 
orientation of the original grain is suitable for the deter- 
mination of Wk. In addition, comparison between press- 
ure fringes around grains whose original shapes are 

symmetrically orientated with respect to the strain axis 
leads to a clearer distinction of Wk. For example, the 
geometry of the pressure fringes with #& = -45” and 
45” and W, = 0 are mirror images of each other. The 
difference in the geometry of pressure fringes with these 
orientations of the original grains increases with W,. 
Furthermore, the presence of different senses of curva- 
ture of pressure fringes indicates a value of W, smaller 
than 1 (Fig. 6). A larger number of pressure fringes of 
variable shape and orientation of the original grain limit 
the value of W, to a narrower range. However, in 
practice this criterion may not be effective for W, values 
larger than 0.5. 

Consequently, a general method for the determi- 
nation of flow parameters is as follows. First, the orien- 
tation of the principal strain axis is determined by the 
grain with nearly straight pressure fringes parallel to the 
long axis of the original grain. Then, the sense and value 
of Wk are determined using several pressure fringes 
around original grains with long axes at a high angle to 
the principal strain axis. The total strain is estimated 
from the length of the pressure fringes, taking the shape 
and orientation of the original grains into account. Thus, 
one pressure fringe is not sufficient to determine the flow 
parameters. The method requires the assumption of 
homogeneous bulk deformation in the domain including 
all grains used in the analysis. 

NATURAL EXAMPLES 

The examples come from an outcrop of Upper Paleo- 
zoic limestone at Nagasaka, in the South Kitakami 
Mountains, northeast Japan. Strata in this area are 
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mainly composed of shallow marine sedimentary and 
volcanic rocks (Onuki 1981), and they were folded, 
cleaved and intruded by granitic bodies during the Early 
Cretaceous (Oho 1981, 1982, Ikeda 1984, Ishii 1985, 
1988a, b, 1990, Kanagawa 1986,199l). 

The studied samples contain variable amounts of 
tuffaceous material and range from massive pure lime- 
stone to highly impure foliated limestone rich in chlor- 
ite. A slaty cleavage defined by the preferred orientation 
of chlorite trends N-S and dips steeply west. A stretch- 
ing lineation on the cleavage is nearly horizontal. 

The limestones include dusty (rich in impurities) cal- 
cite grains, most of which are crinoid segments or 
fragments, in a matrix of fine grained calcite and chlor- 
ite. Pressure fringes are developed on these grains, 
particularly in rocks with a moderate content of tuffa- 
ceous material. As a general tendency, purer limestones 
show evidence of intra-crystalline deformation mechan- 
isms, such as kinking and twinning, and of fracturing of 
calcite grains. In contrast, in highly impure limestones, 
the foliation wraps around the scattered calcite grains 
without the development of pressure fringes. In addi- 
tion, limestones with moderate to high chlorite content 
show evidence of pressure solution such as truncation of 
calcite grains by slaty cleavage. These features may 
indicate that the development of pressure fringes re- 
quires a suitable rheological contrast between the grain 
and the matrix. 

Photomicrographs of pressure fringes in two samples, 
and line drawings from them, are shown in Figs. 10 and 
11. The fringes are mainly composed of calcite, which is 
optically continuous with the original grains, indicating 
that these pressure fringes are of crinoid type. The 
fringes can be distinguished from the original grain by 
their inclusion-free clean appearance. 

Those original grains and pressure fringes that show 
evidence of intra-crystalline deformation, such as wavy 
extinction, kinking, fracturing and pressure solution, 
are excluded from the analysis. Many calcite fringes are 
intergrown with thin chlorites, providing a marker of 
growth direction, which is considered to be the relative 
displacement direction between the grain and the 
matrix. The fringes of pure calcite cannot be used in the 
analysis because of the absence of a marker of the 
growth direction. Some pressure fringes are of compo- 
site type, with calcite growing from the original grain 
and chlorite growing from the matrix (e.g. Figs. 10e & 
h). The chlorite aggregates in these fringes are elongate 
parallel to the slaty cleavage, indicating that they are 
deformable. Since part of the gap has been filled by 
calcite and the rest by chlorite in these composite 
fringes, the size of the rigid composite grain (original 
grain + calcite fringes) is smaller than in the simulation 
model. Therefore, composite type pressure fringes with 
large proportions of chlorite are also excluded from the 
analysis. 

All pressure fringes composed of calcite show the 
same curvature sense (negative), irrespective of shape 
and orientation of the original grains, but the magnitude 
of curvature does vary with these parameters. 

The orientation of the original grains with nearly 
straight pressure fringes parallel to their long axes are 
parallel to slaty cleavage (Figs. 10a & f). This indicates 
that the long axis of the finite strain ellipse for the matrix 
flow during the growth of the pressure fringes is parallel 
to slaty cleavage. Pressure fringes on original grains at a 
high angle to the slaty cleavage (Figs. lob, d & g) and on 
nearly circular original grains (Figs. lOc, e & h), show 
moderate to large curvatures. These variations in 
pressure-fringe curvature as a function of shape and 
orientation of the original grain almost match the results 
of the simulation for Wk = -1. Note in particular the 
large curvature of the pressure fringes in Figs. 10(d) & 
(g) compared with the small curvature in Fig. 10(b) (see 
also Fig. 9) and the decreasing curvature away from the 
original grains in Figs. 10(c), (e) & (h). 

The conclusion is that these pressure fringes are 
estimated to have formed under approximately pro- 
gressive sinistral simple shearing conditions. In addi- 
tion, the axial ratio of the strain ellipse can be estimated 
to be 4-5 from the length of the pressure fringes. 

In sections normal to the lineation and in sections 
parallel to the slaty cleavage, little pressure fringe 
growth is observed, indicating a slight deviation from 
plane strain conditions. 

DISCUSSION 

In this paper, the following assumptions have been 
made in determining the flow parameters: 

(1) The deformation is two dimensional (i.e. plane 
strain) and constant area is maintained. 

(2) The growth direction of the pressure fringe is 
parallel to the direction of relative displacement be- 
tween the grain and the matrix. 

(3) The matrix flow is homogeneous, even immedi- 
ately around the rigid grain. 

(4) The grain and the pressure fringe behave in a rigid 
manner. 

(5) The crystallization rate is commensurate with the 
strain rate. 

(6) The matrix flow pattern is constant with no spin 
component during the deformation. 

(7) The matrix flow is homogeneous within a volume 
including the analyzed pressure fringes. 

Assumptions (l)-(5) are intrinsic to the present simu- 
lation model. On the other hand, Assumptions (6) and 
(7) are not necessary for the model. The model can be 
applied to any time-dependent deformation path, by 
changing the flow parameters for each increment. How- 
ever, this leads to a ridiculous increase in the number of 
parameters to be determined, and these parameters 
must be determined by trial and error. The present 
method can avoid this by making use of Assumptions (6) 
and (7) and by using the systematic variation in the 
geometry of the pressure fringes as a function of the 
shape and orientation of the original grains as a criterion 
of match to the model. 

As described above, Assumptions (2) and (4) hold for 
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Fig. 10. Photomicrographs of pressure fringes around calcite grains set in a matrix of fine-grained calcite and chlorite. The 
fringes consist of calcite in optical continuity with the original calcite grains, and chlorite. The plane of observation is normal 
to slaty cleavage and parallel to lineation and the view is downward. Traces of slaty cleavage are horizontal. The samples 
come from Upper Paleozoic limestones in the South Kitakami Mountains, northeast Japan. (a)-(e) from one sample and 

(f)-(g) from a second sample. All scale bars are 1 mm. 

127.5 
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Fig. 11. Line drawings from the photomicrographs shown in Fig. 10. 
Chlorite in the fringes is indicated by thin lines. 

Fig. 12. Flow in the matrix around the rigid grain and growth of 
pressure fringes for the present simulation model (a) and for an actual 
case (b). A homogeneous matrix flow in the model causes a narrow 

pressure fringe compared with the actual one. 

the present natural examples. Furthermore, Assump- 
tions (5), (6) and (7) are considered to nearly hold from 
the consistency of the variation in the geometry of the 
natural pressure fringes with the simulations. 

Assumption (1) may be a most critical condition for 
the general application of the method to natural 
examples. The three-dimensional shape of the original 
grain can cause rotation of the grain around an axis 
oblique to the plane of observation, even if the matrix 
deformation is plane strain (Jeffery 1922, Freeman 1985, 
Busa & Gray 1992). In this case, the growth direction of 
the pressure fringes will be oblique to the plane. In 
addition, growth of pressure fringes involves mass trans- 
fer of fibre material a certain distance, probably through 
inter-granular fluids. This may lead to net volume 
change. 

Contrary to Assumption (3), the matrix flow is dis- 
turbed around the rigid grain. The pressure fringes in the 
model show a rather abrupt tapering compared with the 
natural examples. This difference may be a result of this 
assumption, as shown in Fig. 12. 

The flow around a rigid grain may be complex and has 
not been realized except for simple cases. For example, 

Masuda & Ando (1988) calculated the matrix flow 
around a rigid spherical grain under a coherent bound- 
ary condition between grain and matrix. However, in 
the development of pressure fringes, the matrix separ- 
ates from the grain. This separation may affect both the 
matrix flow around the grain and the rotational behavior 
of the grain. The effect of this on the geometry of the 
pressure fringes is not clear. 

In conclusion, crinoid-type pressure fringes are useful 
for the determination of non-coaxiality, although 
further studies are needed: (1) for the application to 
general flows, such as three-dimensional flows with 
volume change and time-dependent flow parameters, 
and (2) of the physical processes involved. 
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